Using the EEPROM memory in AVR-GCC

Dean Camera

May 5, 2013

okoskoko sk ok kok ok ok

Text (©) Dean Camera, 2013. All rights reserved.

This document may be freely distributed without payment to the author, provided that it is not
sold, and the original author information is retained.

For more tutorials, project information, donation information and author contact information,
please visit www.fourwalledcubicle.com.

http://www.fourwalledcubicle.com

Contents

1 Introduction
1.1 What is the EEPROM memory and why would T use it?

1.2 How isis accessed? o o 0 e e e e e

2 The avr-libc EEPROM functions
2.1 Including the avr-libc EEPROM header

2.2 The update vs. write functions
3 Reading data from the EEPROM
4 Writing data to the EEPROM
5 EEPROM Block Access
6 Using the EEMEM attribute

7 Setting initial values

10

12

Chapter 1

Introduction

1.1 What is the EEPROM memory and why would I use
it?

Most of the 8-bit AVRs in Atmel’s product line contain at least some internal EEPROM memory.
EEPROM, short for Electronically Erasable Read-Only Memory, is a form of non-volatile memory
with a reasonably long lifespan. Because it is non-volatile, it will retain its information during
periods of no power and thus is a great place for storing data such as device parameters and
system configuration at runtime so that it can persist between resets of the application processor.

One important fact to note is that the AVR’s internal EEPROM memory has a limited lifespan of
100,000 writes per EEPROM page — reads are unlimited. Keep this in mind in your application;
try to keep writes to a minimum, so that you only write the least amount of information required
for your application each time you update the EEPROM.

1.2 How is is accessed?

The AVR’s internal EEPROM is accessed via special registers inside the AVR, which control the
address to be written to (EEPROM uses byte addressing), the data to be written (or the data which
has been read) as well as the flags to instruct the EEPROM controller to perform the requested
read or write operation.

The C language does not have any standards mandating how memory other than a single flat model
(SRAM in AVRs) is accessed or addressed. Because of this, just like storing arbitrary data into
flash memory via your program, every compiler’s standard library has a unique implementation
based on what the author believed was the most logical system.

This tutorial will focus specifically on the AVR-GCC compiler; other compilers may have alternative
syntax and APIs.

Chapter 2

The avr-libc EEPROM functions

2.1 Including the avr-libc EEPROM header

The avr-libe library, included with WinAVR and (more recently) the Atmel AVR Toolchain, con-
tains prebuilt library routines for EEPROM access and manipulation to simplify its use in user
applications. Before we can make use of those routines, we need to include the EEPROM library
header <avr/eeprom.h> with the preprocessor directive #include <avr/eeprom.h>.

Once added to your application, you now have access to the EEPROM memory, via the routines
now provided by the <avr/eeprom.n> module of avr-libc. There are five main types of EEPROM
access: byte, word, dword, float and block. Each type has three types of functions; a write, an
update, and a read variant. The names of the routines exposed by our new headers are:

uint8_t eeprom_read_byte (const uint8_t *addr)
void eeprom_write_byte (uint8_t *addr, uint8_t value)
void eeprom_update_byte (uint8_t *addr, uint8_t value)

uint16_t eeprom_read_word (const uinti6_t *addr)
void eeprom_write_word (uintl16_t *addr, uintl6_t value)
void eeprom_update_word (uintl16_t *addr, uintl6_t value)

uintl16_t eeprom_read_dword (const uint32_t *addr)
void eeprom_write_dword (uint32_t *addr, uint32_t value)
void eeprom_update_dword (uint32_t *addr, uint32_t value)

uintl6_t eeprom_read_float (const float *addr)
void eeprom_write_float (float *addr, float value)
void eeprom_update_float (float *addr, float value)

void eeprom_read_block (void *pointer_ram, const void *pointer_eeprom, size_t n)
void eeprom_write_block (const void *pointer_ram, void *pointer_eeprom, size_t n)
void eeprom_update_block (const void *pointer_ram, void *pointer_eeprom, size_t n)

In AVR-GCC, a word is two bytes long and a double word is twice that (4-bytes), while a block is
an arbitrary number of bytes which you supply (think string buffers, or customer data types you
create) and a float is also four bytes long (but can hold fractional values).

2.2 The update vs. write functions

Historically, there were only two types of EEPROM functions per data type; a write function, and
a read function. In the case of the EEPROM write functions, these functions simply wrote out
the requested data to the EEPROM without any checking performed; this resulted in a reduced
EEPROM lifespan if the data to be written already matches the current contents of the EEPROM
cell. To reduce the wear on the AVR’s limited lifespan EEPROM, the new update functions were
added which only perform an EEPROM write if the data differs from the current cell contents.
The old write functions are still kept around for compatibility with older applications, however

CHAPTER 2. THE AVR-LIBC EEPROM FUNCTIONS 5

the new update functions should be used instead of the old write functions in all new
applications.

Chapter 3

Reading data from the EEPROM

To start, lets try a simple example and try to read a single byte of EEPROM memory, let’s say at
location 46. Our code might look like this:

#include <avr/eeprom.h>
void main(void)
{

uint8_t ByteOfData;

ByteOfData = eeprom_read_byte ((uint8_tx*)46);

This will read out location 46 of the EEPROM and put it into our new variable named Byteofpata.
How does it work? Firstly, we declare our byte variable, which I'm sure you’re familiar with:

uint8_t ByteOfData;

Now, we then call our eeprom_read_byte() routine, which expects a pointer to a byte in the EEPROM
space. We're working with a constant and known address value of 46, so we add in the typecast
to transform that number 46 into a pointer for the eeprom_read_byte() function to make the compiler

happy.

EEPROM words (two bytes in size) can be written and read in much the same way, except they
require a pointer to an int:

#include <avr/eeprom.h>
void main(void)
{

uintl1l6_t WordOfData;

WordOfData = eeprom_read_word ((uinti16_t*)46) ;

And double words and floats can be read using the eeprom_read_dword() and eeprom_read_float() functions
and a pointer to a uint32_t Or float variable.

Chapter 4

Writing data to the EEPROM

Alright, so now we know how to read bytes and words from the EEPROM, but how do we write
data? The same principals as reading EEPROM data apply, except now we need to supply the data
to write as a second argument to the EEPROM functions. As explained earlier, we will use the
EEPROM update functions rather than the old write functions to preserve the EEPROM lifespan
where possible.

#include <avr/eeprom.h>

void main(void)

{

uint8_t ByteOfData;

ByteOfData = 0x12;

eeprom_update_byte ((uint8_t*)46, ByteOfData);
}

Unsuprisingly, the process for writing words of data to the EEPROM follows the same pattern:

#include <avr/eeprom.h>

void main(void)

{

uintl6_t WordOfData;

WordOfData = 0x1232;

eeprom_update_word ((uint16_t*)46, WordOfData);
}

And double WOI‘dS and ﬁO&tS can be Written using the eeprom_update_dword () and eeprom_update_float ()
functions and a uwint32_t Or float variable.

Chapter 5

EEPROM Block Access

Now we can read and write bytes and words to EEPROM, but what about larger datatypes, or
strings? This is where the block commands come in.

The block commands of the avr-libc <avr/eeprom.n> header differ from the word and byte functions
shown above. Unlike it’s smaller cousins, the block commands are both routines which return
nothing, and thus operate on a variable you supply as a parameter. Let’s look at the function
declaration for the block reading command.

void eeprom_read_block (void *pointer_ram, const void *pointer_eeprom, size_t n)

Wow! It looks hard, but in practise it’s not. It may be using a concept you're not familiar with
however, voia-type pointers.

Normal pointers specify the size of the data type in their declaration (or typecast), for example
uint8_t* iS a pointer to an unsigned byte and inti6_t* is a pointer to a signed int. But void is not a
variable type we can create, so what does it mean?

A void type pointer is useful when the exact type of the data being pointed to is not known by a
function, or is unimportant. A void is mearly a pointer to a memory location, with the data stored
at that location being important but the type of data stored at that location not being important.
Why is a void pointer used?

Using a void pointer means that the block read/write functions can deal with any datatype you like,
since all the function does is copy data from one address space to another. The function doesn’t
care what data it copies, only that it copies the correct number of bytes.

Ok, that’s enough of a derail — back to our function. The block commands expect a voidax pointer
to a RAM location, a voiax pointer to an EEPROM location and a value specifying the number of
bytes to be written or read from the buffers. In our first example let’s try to read out 10 bytes of
memory starting from EEPROM address 12 into a string.

#include <avr/eeprom.h>
void main(void)
{
uint8_t StringOfData[10];

eeprom_read_block ((void*)StringOfData, (const void*)12, 10);

Again, looks hard doesn’t it! But it isn’t; let’s break down the arguments we’re sending to the
eeprom_read_block() function.

(void#*)String0OfData

CHAPTER 5. EEPROM BLOCK ACCESS 9

The first argument is the RAM pointer. The eeprom_read_block() routine modifes our RAM buffer
and so the pointer type it’s expecting is a voia* pointer. Our buffer is of the type uints_t, so we
need to typecast its address to the necessary voia type.

(const void*)12

Reading the EEPROM won’t change it, so the second parameter is a pointer of the type const void.
We're currently using a fixed constant as an address, so we need to typecast that constant to a
pointer just like with the byte and word reading examples.

10

Obviously, this the number of bytes to be read. We’re using a constant but a variable could be
supplied instead.

The block update function is used in the same manner, except for the update routine the RAM
pointer is of the type const void and the EEPROM is just a plain void pointer, as the data is sourced
from the RAM location and written to the EEPROM location:

#include <avr/eeprom.h>
void main(void)
{
uint8_t StringOfData[10] = "TEST";

eeprom_update_block ((const void*)StringOfData, (voidx*)12, 10);

Chapter 6

Using the EEMEM attribute

You should now know how to read and write to the EEPROM using fixed addresses. But that’s not
very practical! In a large application, maintaining all the fixed addresses is an absolute nightmare
at best. But there’s a solution to push this work onto the compiler — the eemem attribute.

Defined by the same <avr/eeprom.n header that gives us our access functions for the EEPROM, the
eeMem attribute instructs the GCC compiler to assign your variable into the EEPROM address space,
instead of the SRAM address space like a normal variable. For example, we could add the following
code to our application:

#include <avr/eeprom.h>

uint8_t EEMEM NonVolatileChar;
uintl16_t EEMEM NonVolatilelInt;
uint8_t EEMEM NonVolatileString[10];

And the compiler will automatically allocate addresses for each of the EEPROM variables within
the EEPROM address space, starting from location 0. Although the compiler allocates addresses
for the EEMEM variables you declare, it cannot directly access them. This means that the following
code will NOT work as intended:

#include <avr/eeprom.h>

uint8_t EEMEM NonVolatileChar;
uintl16_t EEMEM NonVolatilelnt;
uint8_t EEMEM NonVolatileString[10];

int main(void)
{
uint8_t SRAMchar;

SRAMchar = NonVolatileChar;

That code will instead assign the RAM variable “SRAMchar” to whatever is located in SRAM
at the address of “NonVolatileChar”, and so the result will be incorrect. Like variables stored in
program memory, we need to still use the eeprom read and write routines discussed above to access
the seperate EEPROM memory space.

So lets try to fix our broken code. We're trying to read out a single byte of memory. Let’s try to
use the eeprom_read_byte () routine.

#include <avr/eeprom.h>

uint8_t EEMEM NonVolatileChar;
uintl16_t EEMEM NonVolatilelnt;
uint8_t EEMEM NonVolatileString[lO];
int main(void)

{

10

CHAPTER 6. USING THE EEMEM ATTRIBUTE 11

uint8_t SRAMchar;

SRAMchar = eeprom_read_byte(&NonVolatileChar);

It works! Why don’t we try to read out the other variables while we're at it. Our second variable
is an int, so we need the eeprom_read_word() routine:

#include <avr/eeprom.h>

uint8_t EEMEM NonVolatileChar;
uintl16_t EEMEM NonVolatilelnt;
uint8_t EEMEM NonVolatileString[lO];

int main(void)

{
uint8_t SRAMchar;
uint16_t SRAMint;
SRAMchar = eeprom_read_byte(&NonVolatileChar);
SRAMint = eeprom_read_word (&NonVolatileInt) ;
}

And our last one is a string, so we’ll have to use the block read command:

#include <avr/eeprom.h>

uint8_t EEMEM NonVolatileChar;
uintl16_t EEMEM NonVolatilelnt;
uint8_t EEMEM NonVolatileStringl[10];

int main(void)

{
uint8_t SRAMchar;
uint16_t SRAMint;
uint8_t SRAMstring[10];

SRAMchar = eeprom_read_byte(&NonVolatileChar);
SRAMint = eeprom_read_word(&NonVolatilelInt);
eeprom_read_block ((void*) SRAMstring, (const voidx)NonVolatileString, 10);

Chapter 7

Setting initial values

Finally, I'll discuss the issue of setting an initial value to your EEPROM variables.

Upon compilation of your program with the default makefile, GCC will output two Intel-HEX
format files. One will be your .HEX which contains your program data (and which is loaded into
your AVR’s memory), and the other will be a .EEP file. The .EEP file contains the default EEP-
ROM values, which you can load into your AVR via your programmer’s EEPROM programming
functions.

To set a default EEPROM value in GCC, simply assign a value to your eemem variable, like thus:

uint8_t EEMEM SomeVariable = 12;

You can then program in the resulting .EEP file into the target’s EEPROM using your chosen
programming software. This is a seperate operation to programming in the application from the
generated .HEX file — if you forget this, your AVR’s EEPROM won’t have the correct initial values!
You should devise a way in your application to check for this possibility to ensure that no problems
will arise if the initial values aren’t loaded correctly, via some sort of protection scheme (eg, loading
in several values and checking against known start values).

12

	Introduction
	What is the EEPROM memory and why would I use it?
	How is is accessed?

	The avr-libc EEPROM functions
	Including the avr-libc EEPROM header
	The update vs. write functions

	Reading data from the EEPROM
	Writing data to the EEPROM
	EEPROM Block Access
	Using the EEMEM attribute
	Setting initial values

